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Abstract Hebb’s idea of a cell assembly as the fundamental unit of neural information

processing has dominated neuroscience like no other theoretical concept within the past 60 years.

A range of different physiological phenomena, from precisely synchronized spiking to broadly

simultaneous rate increases, has been subsumed under this term. Yet progress in this area is

hampered by the lack of statistical tools that would enable to extract assemblies with arbitrary

constellations of time lags, and at multiple temporal scales, partly due to the severe computational

burden. Here we present such a unifying methodological and conceptual framework which detects

assembly structure at many different time scales, levels of precision, and with arbitrary internal

organization. Applying this methodology to multiple single unit recordings from various cortical

areas, we find that there is no universal cortical coding scheme, but that assembly structure and

precision significantly depends on the brain area recorded and ongoing task demands.

DOI: 10.7554/eLife.19428.001

Introduction
Even more than six decades after its conception, Hebb’s (1949) fundamental idea of a cell assembly

continues to play a key role in our understanding of how neural physiology may link up to cognitive

function. Loosely, a cell assembly refers to a group of neurons which, by functionally organizing into

a temporally coherent set, come to represent mental or perceptual entities, thereby forming the

basis of neural coding and computation (Hebb, 1949). However, the term lacks a stringent and uni-

versally accepted definition, and has been used to denote anything from the precise zero-phase-lag

spike synchronization in a defined subset of neurons (Abeles, 1991; Singer and Gray, 1995;

Roelfsema et al., 1997; Diesmann et al., 1999; Harris et al., 2003) to temporally coherent changes

in average firing rates on larger time scales (Goldman-Rakic, 1995; Durstewitz et al., 2000). Often

the term is meant to imply precise millisecond coordination of spike times for a ’volley’ of activity

which repeats at regular or irregular intervals in relation to specific perceptual or motor events

(Figure 1A, I; e.g. [Riehle et al., 1997; Roelfsema et al., 1997; Harris et al., 2003; Fries et al.,

2007]). Precise sequential patterns of spiking times (i.e., with time lags 6¼ 0) have been reported as

well (Figure 1A, II), most commonly in the hippocampal formation where they may correspond to

sequential orders of places (Skaggs and McNaughton, 1996; Buzsáki and Draguhn, 2004), in

the visual cortex as a consequence of different activation levels (König et al., 1995), or as possibly

generated through synfire-chain-like structures (Abeles, 1991; Diesmann et al., 1999). More gener-

ally, neurons may contribute several spikes in any order to a fixed spatio-temporal pattern

(Figure 1A, III), as reported and linked to putative synaptic input motifs in vitro and in vivo

(Ikegaya et al., 2004; Yuste et al., 2005). At a coarser temporal scale, neurons could fire with a spe-

cific temporal patterning to which each neuron may contribute ’bursts’ of variable length

(Figure 1A, IV). Such temporally ordered transitions among coherent firing rate patterns across sets

of simultaneously recorded neurons have been described in different cognitive tasks and systems
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(Seidemann et al., 1996; Beggs and Plenz, 2003; Jones et al., 2007; Lapish et al., 2008;

Durstewitz et al., 2010). At a still broader temporal scale, sets of neurons jointly increasing their

average rates for some period of time (Figure 1A,V), as during persistent activity in a working mem-

ory task, have also been linked to the cell assembly idea (Durstewitz et al., 2000).

There is indeed an ongoing, sometimes heated, controversy about the degree of temporal preci-

sion and coordination present in neural activity and its relevance for neural coding, partly based on

empirical (Shadlen and Movshon, 1999; London et al., 2010), partly on statistical arguments

(Mokeichev et al., 2007). Based on this discussion, it seems at present premature and limiting to

focus on a single specific assembly concept, theoretical idea, or particular time-scale. Here we
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Figure 1. Detection of assemblies defined by different degrees of temporal precision, scale, and internal structure. (A) Different assembly types in

simulated non-stationary spike trains: I –highly precise lag-0 synchronization; II – precise sequential pattern; III – precise spike-time pattern without clear

sequential structure; IV – rate pattern with temporal structure; V – simultaneous rate increase. (B) Assembly-assignment matrix, showing how the 50

simulated units were grouped into assemblies, at which lags l to the leading unit they were so (color-coded), and at which bin widths D the

corresponding assemblies were detected (sorted along abscissa). (C) Assembly retrieval score (fraction of correctly assigned units) as a function of bin

width for the different assembly types, averaged across 70 independent runs. Error bars = SEM.

DOI: 10.7554/eLife.19428.002

The following figure supplement is available for figure 1:

Figure supplement 1. Dependence of synchronous pattern detection on reference lag.

DOI: 10.7554/eLife.19428.003
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develop a novel statistical approach for multi-cell recordings that treats the temporal scale, preci-

sion, and internal organization of coherent activity patterns as free parameters, to be determined

from the data, and is thus open to a large family of possible assembly definitions (Figure 1A). By

deriving a fast parametric test statistic for pairwise dependencies that automatically corrects for

non-stationarity locally, computationally costly bootstrapping and sliding window analyses are

avoided, reducing the computational burden by factors of 100–1000 (see Materials and methods).

Thus, in combination with a computationally efficient agglomeration scheme which recursively com-

bines units into larger sets based on significant relations detected in the previous step, considerable

speed-ups are achieved. This in turn enables screening for assemblies at all possible lag constella-

tions and temporal scales, not accomplished (to this extent) by previous algorithms to our knowl-

edge (see Materials and methods). We then apply this methodology to examine in multiple single-

unit (MSU) recordings from different cortical areas whether these employ a kind of universal tempo-

ral coding scheme, or whether and how the properties of the assembly code are adapted to

the area-specific computations and task demands.

Results

Theoretical framework for assembly detection
From a statistical perspective, any of the assemblies from Figure 1A should reveal itself through

recurring activity patterns in a set of simultaneously recorded spike trains, where a pattern can be

any supra-chance constellation of unit activities with a specific distribution of time lags l among

them. The idea is to capture the multiple temporal scales introduced above through the width D

used for binning the spike time series. We start from the relatively old notion of assessing the depar-

ture of the joint spike count distribution p A;Bð Þ of two units (or sets) A and B from independence

(Grün et al., 2002a; Pipa et al., 2008). For two independent units with stationary spike trains, the

joint distribution of spike occurrences at a specified time lag l would factor into the single unit (‘mar-

ginal’) distributions, p A;Bð Þ ¼ p Að Þp Bð Þ. Assume each recorded spike time series has been converted

into a series ctf g of spike counts of length T at bin width D, with #A and #B denoting the total num-

bers of spikes emitted by units A and B, respectively. If D is small enough such that ct 2 0; 1f g (binary

counts), then, under the null hypothesis (H0) of independence, the joint spike count #AB;l at time lag

l follows a hypergeometric distribution with mean �AB;l ¼ #A#B= T � lð Þ and variance s2

AB;l. If the bin-

ning is such that spike counts ct larger than one occur, the hypergeometric distribution is no longer

directly applicable. We then split the series into several (mutually dependent) binary series

(cf. Figure 6A) for which we obtain a joint mean and variance as derived in the Materials and

methods.

The mean �AB;l and variance s2

AB;l could, in principle, be used to check for deviation from the H0

of independence at lag l, but in practice such a statistic would be corrupted by non-stationarities

like (coupled) changes in the underlying firing rate (see Materials and methods, Figure 7, and Appen-

dix on the importance of accounting for non-stationarity). Sliding window (Grün et al., 2002b) or

bootstrap-based (Fujisawa et al., 2008; Pipa et al., 2008; Picado-Muiño et al., 2013) analyses have

most commonly been used to deal with this issue, but come at the price of considerable data loss or

computational burden. Here we suggest a simple remedy which corrects for non-stationarity locally

by using the difference statistic #ABBA;l ¼ #AB;l �#AB;�l (see Materials and methods, Figure 6B). The

idea is that this way non-stationarities in firing rates would cancel out locally, on a comparatively fine

time scale (» lD), since they would affect #AB;l and #AB;�l alike (for assessment of synchronous spik-

ing, we use #ABBA;0 ¼ #AB;0 �#AB;l� , with l� ¼ �2; see sect. ‘Choice of reference (correction) lag’ for

the motivation of this particular choice and a more general discussion of the reference statistics cho-

sen). The statistic Ql � #ABBA;l
2=ŝ2

ABBA;l finally is approximately F-distributed and can be used for fast

parametric assessment of the H0 (see Materials and methods and Figure 7; Figure 7—figure supple-

ments 1 and 2, for derivation and empirical confirmation using non-stationary synthetic data).

Having derived a fast, non-stationarity-corrected parametric test statistic for assessing

the independence of pairs, we designed an agglomerative, heuristic clustering algorithm for fusing

significant pairs into higher-order assemblies (see Figure 6—figure supplement 1 and Materials and

methods for full derivation and pseudo-code). In essence, at each agglomeration step the algorithm

treats each set of units fused in an earlier step just like a single unit with activation times defined
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through one of its member units. This allows for the same pair-wise test procedure on sets of units

as defined for single units above, while at the same time effectively testing for higher-order depen-

dencies based on the joint (set) distributions (see Materials and methods). Each pair is tested at all

possible lags l 2 �lmax . . . lmaxf g (with lmax provided by the user), which is a reasonably fast process

given the parametric evaluation introduced above. Should a pair of unit-sets prove significant at sev-

eral lags l at any step, only the one associated with the minimum p-value is retained. The recursive

set-fusing scheme stops if no more significant relationships among agglomerated sets and single

units are detected. All subsets nested within larger sets are then discarded. This whole procedure is

repeated for a set of user-provided bin widths D 2 fDmin . . .Dmaxg. For each formed assembly, the

width D

� associated with the lowest p-value may then be defined as its characteristic temporal preci-

sion. All tests are performed at a user-specified, strictly Bonferroni-corrected a-level (always set to

0.05 here; see Materials and methods for details).

Performance evaluation on simulated data
The agglomerative scheme described above is a fast heuristic proxy, similar in spirit to the apriori

algorithm in machine learning (Hastie et al., 2009; Picado-Muiño et al., 2013), for evaluation of all

possible unit and lag combinations. To illustrate and evaluate its performance, synthetic data with

known ground truth were created. Cell assembly structures with the different levels of temporal pre-

cision and internal organization (i.e., lag distributions) as shown in Figure 1A were simultaneously

embedded within inhomogenous (i.e., non-stationary) Poisson spike trains, with a mean rate follow-

ing an auto-regressive process (see Materials and methods). The assembly-assignment matrix in

Figure 1B demonstrates that all five different types of assemblies (and only these, no false detec-

tions) were correctly identified with their associated temporal precision and lag distributions.

Figure 1C illustrates the quality of ‘assembly retrieval’ (measured as fraction of assembly units cor-

rectly assigned) as a function of bin width D: As expected, the retrieval quality steeply declines for

the temporally precise assemblies as the bin width increases (types I and II), while it rises up to the

appropriate temporal scale for the more broadly defined assemblies (types IV and V). For assembly-

type III, defined by precise temporal relationships, yet extended across time without strictly sequen-

tial structure, both these time scales are revealed (leading to the local peak at ~300 ms). Also note

that the correlated rate increases which define assemblies of types IV and V naturally can be discov-

ered already at lower bin widths than the one which corresponds to the temporal extent of the

whole pattern. We also investigated more systematically (Figure 2, see also Materials and methods)

how assembly retrieval varies as a function of sample size and potential spike sorting errors. Assem-

bly detection starts to significantly degrade only when their relative contribution to the spike series

drops below ~4% (Figure 2A), or when more than ~30% of all spike times were corrupted by spike

sorting errors (Figure 2B). More importantly, across a whole range of sample sizes, spike assignment

errors, and assembly structures tested, the fraction of units falsely ascribed to any one assembly

stayed uniformly low at about 0.5% (Figure 2C,D), indicating that our procedure is quite conserva-

tive and rarely returns false positives in the simulated scenarios.

Area- and task-specific assembly configurations and time scales
We next examined assembly structure in different brain regions from which multiple single-unit

recordings were obtained in previously published experiments, including the rat anterior cingulate

cortex (ACC; [Hyman et al., 2012; Hyman et al., 2013]), hippocampal CA1 region, and entorhinal

cortex (EC, [Pastalkova et al., 2008; Mizuseki et al., 2009, 2013]) (see Materials and methods for

further specification). Figure 3A presents the assembly-assignment matrix from one of the ACC data

sets. Detected assemblies span a large range of temporal precisions, from ~10 ms to about 1.5 s,

with a variety of lag distributions, and are composed of about 10% (ACC) to 16% (CA1, EC) of the

recorded neurons. Note that different from the clear-cut hypothetical examples (Figure 1B) which

were strictly disjoint by design, many of the experimentally recorded assemblies partially overlap (i.

e., share units; see also Materials and methods). Figure 3B also gives specific examples of assem-

blies with relatively high (top) and with lower (bottom) temporal precision. Finally, many of the unrav-

eled assemblies were highly selective for specific task events as illustrated in Figure 3C, Figure 3—

figure supplement 1.
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A specific question one might ask is whether different brain areas host different types of assembly

structures, and how these may depend on the behavioral task. These aspects are quantified in

Figure 4A by plotting the distribution of all significant unit pairs as a function of bin width D and

time lag l. Several features are noteworthy here: First, the joint D; lð Þ-distribution changes dramati-

cally as the animals move from unstructured, completely self-paced, little demanding environmental

exploration (Figure 4A, left column) to a highly structured, demanding delayed alternation task

(Figure 4A, right column). During the latter, a much larger number and richer repertoire of assembly

structures turned out, as also indicated by the ‘marginal’ distributions of significant unit pairs across

time scales D in Figure 4B. However, secondly, while these changes in ACC and CA1 were mostly

focused on the larger timescales, in EC they appeared to run across all timescales, yet were overall

less dramatic than in CA1 (Figure 4A, bottom; Figure 4B, bottom). Third, assemblies remarkably dif-

fer among the three brain regions in the range of temporal scales they occupy: While EC mainly har-

bors fine temporal structure with a precision of about 15–50 ms, in ACC broad rate change patterns

in the 120–700 ms range appear to dominate (Figure 4B). CA1, in contrast, expresses both temporal

scales, or in fact a wide spectrum from about 30–1500 ms, of which the broader scales (>100 ms)

only surface during delayed alternation. Overall, a much larger number of units engaged in any one

assembly in CA1 (>90%) than in ACC (30–50%; Figure 4B). These observations indicate that the

temporal composition and precision of assembly activity strongly depends on both the brain area

and the behavioral setting.

On closer inspection, some of the temporally more precise 30–50 ms assemblies in CA1 were

found to code for specific place fields (‘place assemblies’) in the rat’s environment (Figure 5A, Fig-

ure 5—figure supplement 1). These assemblies mainly consisted of synchronous (lag-0) spiking units

(Figure 4A). Meanwhile, the more broadly tuned assemblies in CA1 tended to code for temporally

extended events which often appeared to have a specific behavioral meaning in the task context:
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Figure 2. Performance evaluation of assembly detection algorithm. (A) Rand index R r; sð Þ, Equation 14, as a function of the total number of

occurrences of the assembly pattern in spike time series of length T=1400 s, averaged across 50 independent runs, for all five types of assemblies from

Figure 1 (as indicated in the inset legend). Percentages at the half-width points of the R r; sð Þ-curves indicate the proportion of spikes in the time series

contributed by the assembly structures at these points. (B) Rand index for all assembly types as a function of the fraction of incorrectly assigned spikes

(‘sorting errors’). (C) Fraction of units incorrectly assigned to an assembly across a range of assembly occurrence rates. (D) Fraction of units incorrectly

assigned to an assembly as a function of the fraction of misattributed spikes. Error bars = SEM.

DOI: 10.7554/eLife.19428.004
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For instance, these assemblies may become active during the reward event irrespective of its spatial

location (Figure 5B), or for the whole correct choice path after a behavioral decision was made

(Figure 5D). These temporally broader assemblies commonly also followed a more sequential

(lag 6¼0) layout (Figure 4A). Interestingly, the single cells constituting CA1 assemblies did not neces-

sarily share the same place preference with their ‘parent’ assembly (Figure 5—figure supplement

1). Similar as in CA1, broader assemblies in ACC were tuned to specific task phases and events
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Figure 3. Assemblies in recordings from anterior cingulate cortex (ACC) during delayed alternation. (A) Assembly-assignment matrix for one ACC data

set, with the average firing rate of units indicated on the left. (B) Examples of detected assembly patterns at relatively precise (top; 50 ms) and broader

(bottom; 200 ms) time scales. Insets on the right zoom in on detected assemblies with optimal binning D indicated by vertical lines. See

Material and methods for computation of assembly activation scores (‘activity’) as shown in the lower panels. (C) Two examples of selective assembly

activity discriminating between left (blue curves, n=39) and right (red curves, n=34) lever presses during actual lever press (top) or during delay

(bottom). Times of lever press and nose poke are indicated by vertical red and black dashed lines, respectively. Periods of significant differentiation

indicated by black bars above curves (two-tailed, paired t-test, *p<0.05, Bonferroni-corrected for number of bins tested, Figure 3—source data 1).

Shaded areas = SEM.

DOI: 10.7554/eLife.19428.005

The following source data and figure supplement are available for figure 3:

Source data 1. Assembly activation in different trials relative to left/right lever press for assemblies n. 21 and n. 43.

DOI: 10.7554/eLife.19428.006

Figure supplement 1. Examples of assembly activation in a delayed alternation task.

DOI: 10.7554/eLife.19428.007
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(lever presses, delays, stimulus conditions) and reflected the task’s sequential structure (Figure 3C,

Figure 3—figure supplement 1).

Discussion
Here we introduced a novel theoretical and statistical framework, based on fast parametric testing

and computationally efficient agglomerative algorithms, which detects assembly structure at many

different temporal scales, and with arbitrary internal organization, while at the same time accounting

for non-stationarity on a fine time scale. This enables to readdress fundamental questions about the

temporal structure and nature of neural representations in a largely unbiased way. One potential

caveat to be noted here, however, is that the particular choice of reference bin for removing non-sta-

tionarity still entails a (mild) assumption about structure: For the present choice of pairing #AB;l with

its time reverse, #AB;�l, it is that temporal dependencies are essentially directed (except for the syn-

chronous case), i.e. do not simultaneously, within a given pair of time series, occur with exactly the

same time lag in both directions. If in doubt about this, however, analyses may be repeated with

another (not too large) reference lag (see sect. ‘Choice of reference (correction) lag’ for a discussion

of alternative choices and factors to consider, including differences in sensitivity to non-stationarity

implied by different lag spans covered by the test statistic). Testing other reference lags may also

help with types of non-stationarity that may violate the conditions defined below Equation 6.
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Figure 4. Assembly structure in different brain areas and behavioral tasks. (A) Relative frequency histograms

(color-coded) of all significant unit pairs, pooled across all detected assemblies, as a function of characteristic time

scale D 2 f0:015 . . . 1:5gs and lag l 2 �10 . . . 10f g, for the anterior cingulate cortex (ACC, top), CA1 region (center),

and entorhinal cortex (EC, bottom) during environmental exploration (left; total numbers of pairs tested: 9316

[ACC], 7597 [CA1], 5024 [EC]) and delayed alternation (right; total numbers of pairs tested: 4090 [ACC], 9847 [CA1],

4183 [EC]). Note that the aggregation at larger lags for ACC is partly due to the fact that the algorithm considered

lags up to lmax ¼ 10, such that significant pairs with optimal lag l>10 have been assigned to lmax. All tests are

Bonferroni-corrected for numbers of pairs and lags tested. (B) Marginal distributions of significant assembly-unit

pairs across temporal scales D for ACC (top), CA1 (center), and EC (bottom). Blue curves = environmental

exploration. Red curves = delayed alternation. Shaded areas = SEM.

DOI: 10.7554/eLife.19428.008
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Illustrating this methodology on multiple single-unit recordings from ACC, CA1, and EC, it

appeared as if the temporal structure and precision of the revealed assemblies were closely related

to the computations performed by these brain areas: While the CA1 region processes precise spatial

(O’Keeffee and Nadel, 1978; Harris et al., 2003; Diba and Buzsáki, 2007) and temporal (Eichen-

baum, 2014) environmental structure, the ACC is much less concerned with finely-granulated details

of the spatial world (Hyman et al., 2012). Rather, activity in ACC reflects behavioral organization,
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Figure 5. Assembly coding at different time scales in CA1. Color-coded activity maps for four CA1 assemblies during an environmental exploration task

(A) and a delayed alternation task (B, C, D). Below x-axis in each panel: Identities of neurons assigned to the assembly, associated time lags within

an assembly, and temporal scale of assembly.

DOI: 10.7554/eLife.19428.009

The following figure supplement is available for figure 5:

Figure supplement 1. Single-unit composition of cell assemblies.

DOI: 10.7554/eLife.19428.010
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behavioral monitoring, overall context, and task structure, processes which typically unfold on much

slower temporal scales (Lapish et al., 2008; Hyman et al., 2012). Likewise, in addition to spatial

coding, the hippocampal CA1 region has also been reported to represent aspects of higher-order

decision making, like paths to a defined goal state or choice outcomes (Lisman and Redish, 2009;

Buzsáki, 2015). These capacities may become relevant only when an animal is transferred from

unstructured environmental exploration to a task which involves clearly defined goal states, reward-

related choices, and possibly time delays between them. Consequently, sequential organization of

assemblies at broader time scales was much more often observed in the latter than in the former

task context.

Numerous other statistical procedures for detecting assemblies or sequential patterns have been

proposed previously (Grün et al., 2002a; Grün et al., 2002b; Pipa et al., 2008; Torre et al.,

2016a), but most of these adhere to one or the other theoretical conceptualization of a cell assem-

bly (cf. Figure 1A), or become computationally impractical for larger cell numbers or multiple lags

(see Appendix for further discussion of both more recent and more ’traditional’, cross-correlation-

based, approaches). Also, none of these, to our knowledge, combines all of the features presented

here. The statistical tools developed here may allow readdressing questions about the nature of neu-

ral coding in different brain areas, without requiring the researcher to commit to any particular

assembly concept or theoretical framework a priori. Indeed, we observed that there may be not just

one type of cortical assembly code, but that the temporal precision, scale, and sequential composi-

tion with which cortical neurons organize into coherent patterns strongly depends on the brain area

and task context investigated. We further note that our methods are not specific to the neuroscien-

tific domain, but could be used more widely in other scientific areas to detect structure at multiple

temporal scales in multivariate event count series.

Materials and methods

Statistical test for pairwise interaction
Assume we have recorded N spike trains, each divided into T bins of equal bin width D, resulting in a

spike count series cK;t
� 	

, t ¼ 1 . . . T , for each recorded unit K. Bin width D sets the temporal precision

at which unit interactions are to be detected. We would like to test for a range of time lags l 2

�lmax . . . lmaxf g whether the joint spike count #AB;l of units A and B at lag l significantly exceeds of what

would have been expected under the null hypothesis (H0) of independence of the two spiking pro-

cesses. For clarity, note that #AB;l is computed by counting the number of times we have a spike in

unit A and a corresponding spike in unit B l time bins later. From the range of all considered lags, we

select the one which corresponds to the highest count #AB;�l, i.e. �l � argmaxlð#AB;lÞ. For deriving the

proper distributional assumptions under the H0, spike count series cK;t
� 	

are often thresholded

(Grün et al., 2002a; Humphries, 2011; Shimazaki et al., 2012; Picado-Muiño et al., 2013) such that

binary {0,1}-series are obtained, presumably partially since multivariate extensions of the binomial or

hypergeometric distribution are not yet commonplace (see Teugels, 1990; Dai et al., 2013). Espe-

cially for larger bin widths D this implies a serious loss of information, however. Therefore, we sought a

different approach to the problem that makes use of the full spike counts, based on the first two

moments of a multivariate hypergeometric distribution. Instead of thresholding, we split each spike

count series into a set of a ¼ 1 . . .MK binary processes as indicated in Figure 6A, where Mk �

max cK;t
� �

is the maximum spike count observed for unit K for the specified bin width. The first binary

process is defined by having a ‘1’ in all time bins for which spike count cK;t � 1 (and ‘0’ otherwise), the

second process by having a ‘1’ only in those time bins for which cK;t � 2, and so on. For any two units

A and B, defining M � min MA;MBð Þ, the total joint count #AB;�l at selected lag �l is now simply given by

the sum of joint counts#a
AB;�l

across all pairs of binary subprocesses a ¼ 1 . . .M,

#AB;�l ¼
X

M

a¼1

#a
AB;�l : (1)

Since each of the M subprocesses is binary, each number #a
AB;�l

follows a hypergeometric distribution

under the H0 (since marginal counts #a
A and #a

B are fixed by the observed data, a binomial
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distribution is not appropriate [Gütig et al., 2002]). From this, and noting that the M binary pro-

cesses are not independent since by construction each higher-rank process g >a can only have ‘1 s’

where the lower-rank processes a had as well (but not necessarily vice versa), one can derive the

expectancy value and variance of #AB;�l, respectively, under the H0 as

�AB;�l � E #AB;�l

� �

¼
X

M

a¼1

#a
A#

a
B

T ��l
(2)
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S
p
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e
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0 211 1 2 1 0 2 0 0 1 1 1 1 0 2 1 3 1 0 0

0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 111 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0

=

0 100 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0

+

+

B

A

0 1 100 2 1 2 1 1 1 2 1 0 0 0 0 1 1 1 1 0 0

0 1 210 0 1 0 0 2 1 0 1 0 0 0 1 0 0 1 0 0 0

Unit A

Unit B

non-stationarity

#AB,l - #BA,l ≈ 0

Figure 6. Method details. (A) For deriving a statistical test that works with any temporal bin width the spike count series were separated into an overlay

of several (dependent) binary sub-processes. See Materials and methods for further explanation. (B) Dealing with non-stationarity in the spike trains. In

the case of non-stationarity in the form of a common rate increase in two units A and B (highlighted in gray), some spike co-occurrences caused by the

rate increase might be incorrectly attributed to coupled activity (mutual dependence) at the finer timescale (bin width) at which coupling is investigated

(at a lag of one in the illustrated example), even if there is not really any such coupling as assumed in this example. This corruption by non-stationarity

may be removed by considering the difference count #AB �#BA, in which spurious excess coincidences in one direction (#AB: red arrows) would cancel

out with those in the reverse direction (#BA: blue arrows). It is important to note that if, on the other hand, the rate increase is on the timescale of

interest, as it is the case for the ‘rate assemblies’ of type IV or V in Figure 1), subtracting off the reverse-lag count would not prevent assembly

detection on that time scale.

DOI: 10.7554/eLife.19428.011

The following figure supplement is available for figure 6:

Figure supplement 1. Pipeline of assembly agglomeration algorithm.

DOI: 10.7554/eLife.19428.012
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s2

AB;�l
� E #AB;�l�E #AB;�l

� �� �2
h i

¼
P

M

a¼1

var #a
AB;�l

� �

þ 2
P

M�1

a¼1

P

M

g>a
cov #a

AB;�l
;#g

AB;�l

� �

¼
P

M

a¼1

#a
A
#a

B

~T

~T�#a
Að Þ ~T�#a

Bð Þ
~T ~T�1ð Þ

þ 2
P

M�1

a¼1

P

M

g>a

#
g

A
#

g

B

~T

~T�#a
Að Þ ~T�#a

Bð Þ
~T ~T�1ð Þ

with ~T ¼ T ��l:

(3)

A parametric test statistic, S�l � #AB;�l� �̂AB;�l

� �

=ŝAB;�l (t-distributed with 2 T ��lð ÞM� 1 degrees of free-

dom), could be based directly on these moments under the null hypothesis of independence on all

time scales (for all choices of D), and if the data were truly stationary (by which we mean here that

the joint probability distribution pAB;t;l u;vð Þ � pr cA;t ¼ u^ cB;tþl ¼ v
� �

is time-invariant, i.e. pAB;t;l u;vð Þ ¼

pAB;l u;vð Þ for all t). This will commonly not be the case with electrophysiological time series. Rather,

there will be rate fluctuations on different temporal scales, as for instance induced by oscillatory

drive or external stimuli (Quiroga-Lombard et al., 2013). Under these conditions, variance Equa-

tion 3 will usually be highly biased, often underestimating the true variation. Furthermore, the joint

count #AB;�l may not factor into the product of the marginal counts as in Equation 2 anymore, since,

in general, E #A½ �E #B;l

� �

6¼ T � lð Þ
PT�l

t¼1 E #A;t

� �

E #B;tþl

� �

for any fixed non-stationary set

pAB;t;l u;vð Þ; t¼ 1 . . .T � l
� 	

. Finally, we are interested in testing for independence at a defined time

scale D, but may want to permit the processes to be coupled at other temporal scales, like for

instance with common external or oscillatory drive. In this case the simple test statistic defined above

(S�l) breaks down (Figure 7 left column). Hence, we would like to test against a stronger H0 which

allows for uncoupled or coupled rate changes on broader temporal scales without corrupting our

assessment of independence on finer scales.

In the time series literature, the most common remedies for non-stationarity issues are bootstrap-

based techniques (Fujisawa et al., 2008; Pipa et al., 2008; Picado-Muiño et al., 2013; Torre et al.,

2013) and sliding window analyses (Grün et al., 2002b).These two methods have, however, severe

limitations. Bootstrap-based approaches are computationally quite demanding since essential steps

of the algorithm may have to be repeated for a 100–1000 bootstrap replications. This may become

outright prohibitive especially when multiple lag constellations are to be considered as in the pres-

ent work. Sliding window analysis, on the other hand, uses only small fragments of the data set for

estimation in each window, thus can be seriously plagued by low sample size issues (resulting in

weak statistical power). Sometimes this is (partly) addressed by pooling across many trials, but this in

turn requires (a) a sufficient number of trials, (b) stationarity across trials, and (c) clear external time-

stamps such that windows across trials are indeed comparable and can be aligned. In many tasks

probing higher cognition, where just a handful of trials are not rare (e.g. [Lapish et al., 2008;

Hyman et al., 2012]), or in self-paced tasks, these methods are thus not applicable.

We therefore propose a new approach to non-stationarity here. Rather than testing #AB;�l directly

for significance, our approach focuses on the asymmetry between the occurrence rates of patterns

AB; lð Þ and BA; lð Þ ¼ AB;�lð Þ, respectively, defined through

#ABBA;�l ¼#AB;�l�#AB;��l : (4)

The idea is that non-stationarity on slower time scales (>�lD, if D is the time scale considered), e.g. in

the form of correlated rate changes, will, on average, cancel out in #ABBA;�l, since it will affect #AB;�l

and #AB;��l alike (for clarity, note that #AB;�l is accumulated across t¼ 1:T ��l, while #AB;��l runs across

t¼�lþ 1:T ; we also note that while differencing to remove non-stationarity is, in general, a more com-

mon practice in the ‘classical’ time series literature, e.g. (Box et al., 2013), here we use this tech-

nique in a very specific sense by forming the difference between one joint count series and its

reverse). More precisely, the scenarios covered by our H0 Dð Þ should be those where the two pro-

cesses A and B are independent on the specified scale D, in fact independent for all scales at least

up to lD, while they may be coupled and/or non-stationary on slower temporal scales of at least lD.

Our H0 requires E #D

AB;�l

h i

¼ E #D

AB;��l

h i

(where superscript D indicates that counts were taken at that

temporal resolution), which strictly holds if
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X

M

a¼1

X

T�l

t¼1

p c
D;a
A;tþljc

D;a
B;t

� �

p c
D;a
B;t

� �

¼
X

M

a¼1

X

T�l

t¼1

p c
D;a
A;t jc

D;a
B;tþl

� �

p c
D;a
B;tþl

� �

(5)

The H0(D) furthermore demands that this factorizes as

X

M

a¼1

X

T�l

t¼1

p c
D;a
A;tþl

� �

p c
D;a
B;t

� �

¼
X

M

a¼1

X

T�l

t¼1

p c
D;a
A;t

� �

p c
D;a
B;tþl

� �

: (6)

Now, if the two processes A and B are reasonably stationary at least on scales up to l �D, we have

p c
D;a
A;t

� �

»p c
D;a
A;tþl

� �

and p c
D;a
B;tþl

� �

»p c
D;a
B;t

� �

and the equalities above should (approximately) hold, even

if the processes are non-stationary and/or coupled on broader temporal scales. Thus, under the H0

of independence on the time scale fixed by precision D, E #D

AB;�l

h i

¼ E #D

AB;��l

h i

if (eq. 6) holds exactly,

and approximately otherwise.

Under the alternative hypothesis of dependence on the specific scale D considered, on the other

hand, if pattern ðAB;�lÞ occurs more frequently than expected by chance, e.g. because unit A excites

unit B, it appears (mechanistically) rather unlikely that the same is true for the exact time reversed

pattern ðAB;��lÞ, unless the two units are in perfect synchrony as treated below (but see sect. ‘Choice

of reference (correction) lag’ where this issue and alternative choices of reference bin are further dis-

cussed); hence #ABBA;�l would be expected to differ from zero.

To accommodate the strictly synchronous case (�l ¼ 0), finally, we slightly modify Equation 4 to be

#ABBA;0 ¼#AB;0�#AB;l� ; (7)

with l� 6¼ 0. While, in principle, different reference lags l� may be attempted for confirmatory pur-

poses, here we suggest l� ¼�2 as a tradeoff between potential ‘spillover’ issues and the effective

timescale at which non-stationarity is removed, as discussed in more detail in the sect. ‘Choice of ref-

erence (correction) lag’ below (see also Figure 1—figure supplement 1). Note that #ABBA;0>0 if syn-

chrony is the dominant pattern, while the sequential case �l¼�2 is tested separately by #ABBA;�2.

Again, under the H0, E #AB;0

� �

¼ E #AB;l�
� �

, while under the H1 of synchronous spiking #ABBA;0 would

be expected to be larger than zero (one may also define the symmetric quantity

#ABBA;0 ¼#AB;0� #AB;l� þ#AB;�l�
� �

=2, but it makes the computation of the variance, Equation 10

below, more cumbersome). Following the same lines laid out above in deriving Equations 2 and 3,

for these modified, stationarity-corrected statistics we thus obtain for the mean �ABBA;�l and variance

s2

ABBA;�l
under the H0, respectively,

�ABBA;�l � E #AB;�l

� �

�E #AB;��l

� �

¼ 0 (8)

and

s2

ABBA;�l � E #ABBA;�l�E #ABBA;�l

� �� �2
h i

¼ 2s2

AB;�l� 2cov #AB;�l;#AB;��l

� �

; (9)

where �ABBA;�l ¼ 0 will approximately hold even under non-stationarity (see above). If the process is

strongly non-stationary, however, evaluating Equation 9 directly across the whole time series may

still give an inaccurate estimate of variance. In general, we therefore divide the binned spike train

into C segments of k time bins each, and combine the local, segment-wise variance estimates into

the global estimate ŝ2

ABBA;�l
with
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ŝ2

AB;�l
¼ varð#AB;�lÞ ¼ var

P

C

c¼1

#c
AB;�l

� �

¼
P

C

c¼1

varð#c
AB;�l
Þþ 2

P

C�1

c¼1

P

C

&>c
cov #c

AB;�l
;#&

AB;�l

� �

;

covð#AB;�l;#AB;��lÞ ¼
P

C

c¼1

covð#c
AB;�l

;#c
AB;��l
Þþ 2

P

C�1

c¼1

P

C

&>c
covð#c

AB;�l
;#&

AB;��l
Þ; and

covð#c
AB;�l

;#c
AB;��l
Þ ¼

P

M

a¼1

#
c;a
A

#
c;a
B

k

ðk�#c;a
A
Þðk�#c;a

B
Þ

kðk�1Þ2
þ

þ2
P

M�1

a¼1

P

M

g>a

#
c;g
A

#
c;g
B

k

k�#c;a
Að Þ k�#c;a

Bð Þ
k k�1ð Þ2

:

(10)

For smaller segment length k (here we used k=100), this approximation will become more accurate

(as within each short segment the process will approach stationarity), yet at the same time computa-

tionally more demanding. In practice, covariation among segments may often be negligible com-

pared to the within-segment variance contributions (see below; e.g. if auto-correlations decay

relatively fast), so to reduce the computational burden one may evaluate the quantity

ŝ2

ABBA;�l
»2

PC
c¼1 varð#

c
AB;�l
Þ� 2

PC
c¼1 covð#

c
AB;�l

;#c
AB;��l
Þ. This is in fact the estimate we have used through-

out this manuscript.

Based on the estimates derived above, we can then define the following approximately F-distrib-

uted quantity which can be used for significance testing:

Q�l �
#ABBA;�l��ABBA;�l

� �2

ŝ2

ABBA;�l

~F1;v (11)

with 1 numerator and v denominator degrees of freedom. We found these approximations to work

reasonably well for E #AB;�l

� �

>4 (see Figure 7). For one numerator and large denominator d.f., the F

distribution is known to converge to the �2

1
distribution which could be used for testing instead. For

smaller sample sizes and non-stationary scenarios (where the variance ŝ2

ABBA;�l
is not exact anymore

but estimated from segments), however, the F distribution appeared more appropriate, although

the exact denominator d.f. are unknown in this case. For all analysis reported here we have used

v¼ 2 T ��lð ÞM� 1, but more generally we recommend v¼ T ��l which is more conservative for low

sample size (T<50; the differences become negligible for T>400 as in the case of most analyses

reported here). Finally, all a-levels are Bonferroni-corrected for the number R of tests performed

(see pseudo-code below and sect. ‘Recursive assembly agglomeration algorithm’).

Limitations of parametric testing under non-stationarity
To examine the error made by the various approximations introduced above, we empirically studied

different scenarios by simulation. In one set of simulations, discrete, step-like rate-changes were

used. Within a total of T=106 ‘elementary’ time bins (not to be confused with bin width D used for

assembly detection), low-rate states were randomly interspersed with m high-rate states of duration

L (expressed in terms of numbers of elementary bins). For each elementary time bin, spikes were

drawn from a Bernoulli process with probabilities plow and phigh, respectively. Here, L explicitly

defines the time scale on which the two processes are non-stationary and, in some simulations, cou-

pled. Simulations (with D=100, l2{0,5,10}) were performed with both relatively fast (m=25, L=3000,

on the order of 2lmaxD; Figure 7—figure supplement 1, center column) and slow (m=1, L=75000;

Figure 7—figure supplement 1, right column) rate variations (both with the same number of high-

rate bins), and with one independent scenario (Figure 7—figure supplement 1, top row) and one

where the rate variations were completely synchronized between the two processes (Figure 7—fig-

ure supplement 1, bottom row). As the percentile-percentile plots in Figure 7—figure supplement

1 reveal, in all these cases departures from the theoretical F distribution were relatively mild. We

emphasize that this was the case although the difference between the low and high rate states was

assumed to be rather large in our simulations (pA,low=0.01 vs. pA,high=0.05, and pB,low=0.03 vs. pB,

high=0.15), a larger violation of stationarity than one may actually expect empirically.

In another set of simulations, time-varying firing rates for the two neurons were drawn from a

slowly varying auto-regressive process with Gaussian noise (or, equivalently, a joint multivariate

Gaussian). Spike counts for each bin were then drawn from a Poisson distribution with the rate l
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Figure 7. Comparison of non-corrected (S�l) and stationarity-corrected (Q�l) pairwise test statistics. Percentile-percentile plots showing agreement

between the theoretical distributions for different test statistics considered in the text (S�l, Q�l with C=1, and with C=100 segments) and the distributions

empirically obtained, for the truly stationary case (top row), independent non-stationarity (center row), and non-stationarity coupled among the two

units A and B (bottom row). Overlaid are distributions derived from 4000 simulation runs with spike time series analyzed for the three different lags l= 0

(blue curves), 5 (yellow) and 10 (red). D=100 in all cases. Simulations are with non-stationarity implemented as step-type rate-changes (see Materials and

methods) with m=1 and L=75000. Identity line (bisectrix) is marked in gray. Results for test statistic used for all data analyses in this work highlighted by

light-gray box.

DOI: 10.7554/eLife.19428.013

The following figure supplements are available for figure 7:

Figure supplement 1. Statistical testing under non-stationarity on different time scales: step-like rate change.

DOI: 10.7554/eLife.19428.014

Figure supplement 2. Statistical testing under non-stationarity on different time scales: rate covariation.

DOI: 10.7554/eLife.19428.015

Figure 7 continued on next page
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determined by the auto-regressive process passed through a non-negative transform (‘link-function’,

see Equation 13 below). We simulated scenarios with both somewhat faster (covðlA;t; lA;tþ2DlmaxÞ» 0:8;

Figure 7—figure supplement 2, center column) and very slowly decaying auto-correlations

(covðlA;t; lA;tþ2DlmaxÞ» 0:99; Figure 7—figure supplement 2, right column), and without

(cov lA;t; lB;t
� �

¼ 0; Figure 7—figure supplement 2, top row) or with (cov lA;t; lB;t
� �

» 0:7; Figure 7—

figure supplement 2, bottom row) correlations among the two processes present. As Figure 7—fig-

ure supplement 2 reveals, the results for these simulation experiments were very similar to those

shown in Figure 7—figure supplement 1, with the empirical Q�l distribution deviating only slightly

from the theoretical F distribution. We thus conclude that for empirically reasonable scenarios of

non-stationarity and coupling on longer time scales, the parametric statistical procedure introduced

above should return quite accurate results.

It is important to note that while coherent rate changes constitute a coupled non-stationarity

from the viewpoint of smaller timescales D, for which they will be removed by our difference statistic,

they actually represent an assembly on their own characteristic scale (type V in Figure 1). They are

indeed correctly identified as such in both simulated scenarios when the bin width is chosen to be

about the same as the time-scale of the ‘non-stationarity’, i.e. D»L (m=75, L=1000; Figure 7—figure

supplements 1,2, left columns, blue curves in bottom graphs). Hence, non-stationarity, in the pres-

ent definition, refers to somewhat slower (co-)variations that may mislead detection of coincident

events on comparatively finer time scales. Both, the relevant time scale for assembly detection and

the associated time scale of non-stationarity, are strictly defined by the experimenter by fixing D.

Whether the detected temporal structure is interpreted as an assembly or as non-stationarity there-

fore depends on the timescale chosen, and is ultimately up to the experimenter and the research

question posed. From this perspective, our method basically ensures that coincidence structure is

not falsely attributed to a certain temporal precision D while it was really produced by slower (co-)

variations, an issue that has frequently plagued the discussion about precise temporal coding in the

nervous system in the past (eg., [Singer, 1999] vs. [Shadlen and Movshon, 1999]).

As another note of caution, we remark that while under the H0 assumptions (independence and

stationarity on scales � lD) equality (Goldman-Rakic, 1995) will always hold (in expectancy), the size

of the deviations from the H0 in the case of true structure (and thus the test’s sensitivity or power)

may, in principle, depend on how exactly non-stationary processes interact with underlying struc-

ture-creating processes (e.g., linearly vs. non-linearly).

Oscillations
Finally, as an example of a particularly common form of non-stationarity in neural data (e.g. [Quir-

oga-Lombard et al., 2013]), we considered oscillations (Buzsáki and Draguhn, 2004). (Note that

oscillations constitute a type of non-stationarity from the present neurophysiological perspective,

although they may be considered stationary in the classical statistical definition with access to an infi-

nite ensemble of time series starting at random phases (see [Fan and Yao, 2003]). We tested two

scenarios here: One in which two neurons were spiking independently at the time scale considered,

but were driven by a common oscillatory drive at the same frequency and phase, and one where on

top the units exhibited supra-chance coincident patterns. Specifically, for both units A and B the fir-

ing probability was taken to follow a Poisson distribution with rate parameter

l A;Bf gðtÞ ¼ 5ðsinð2p�tÞ0:6þ a A;Bf gÞ, aA ¼ 1, aB ¼ 0:5, � ¼ 4Hz, yielding mean firing rates of 5Hz and

2.5Hz, respectively. For the independent case, no structure is detected for smaller bin widths D up

to » 30 ms (Figure 7—figure supplement 3A), while for larger bin widths (>50 ms) the algorithm

picks up the coordinated rate changes. For the second scenario (finer time-scale dependence on top

of oscillation), patterns are inserted on top with a spike in unit A followed by one in unit B 20 ms

later, phase-locked to the underlying rhythm. Within a T=1500 s long simulation period, a total of 90

of such patterns were placed randomly with a 20 ms delay to the oscillation peak. Figure 7—figure

supplement 2B shows that these patterns are indeed correctly detected by our procedure at the

Figure 7 continued

Figure supplement 3. Detecting coupling among oscillating units.

DOI: 10.7554/eLife.19428.016
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smaller bin sizes ({5, 10} ms) tested. Thus, once again, this example illustrates that the detection of

finer time scale spike time relations is not confounded by covariations at slower scales, while the

slower covariations are flagged up as a coherent structure at their own respective time scale (50–120

ms).

Choice of reference (correction) lag
To eliminate non-stationarity as a confounding factor, we suggested computing the difference

between the target-lag joint count #AB;l and its time inverse #AB;�l. Strictly, this implies that if there

were precise repeats of spiking sequences in reverse order, both the forward and backward direc-

tions would go undetected as they would cancel each other. Although a few studies have suggested

that reverse replay may indeed occur in hippocampus (Foster and Wilson, 2006; Diba and Buzsáki,

2007), in general it seems unlikely that sequential patterns are replayed in reverse order with exactly

the same time lag constellation and at the very same temporal scale as in the forward direction, such

that the patterns would fully cancel (or at least this seems not more likely than constellations implied

by any other choice of reference lags). Nevertheless, this brings up the more general question of

whether there is a better choice of reference lag. Furthermore, the pairing of l with its exact oppo-

site, �l, implies that non-stationarity will be removed at different timescales (with different levels of

precision, lD) for different lags, a potentially undesired effect if direct comparisons between struc-

tures with different lag sizes are sought.

Indeed, in principle, any other lag might potentially be chosen as a reference. A general recom-

mendation therefore might be to simply repeat the analyses with other reference lags if researchers

suspect that there might be significant structure at both �l and ��l, or to fix the reference lag to be, e.

g., l� ¼ � lmax þ 1ð Þ, with lmax the maximum lag tested for, for all lags considered. Doing this for the

ACC delayed alternation data set presented in Figure 4 as an example, we found that the overlap

between assemblies detected with l� ¼ ��l and l� ¼ � lmax þ 1ð Þ (fixed for all query lags) was on aver-

age » 97% across all timescales (range 96–99%; as measured by the Rand index, Equation 14,

defined across all matching pairs with significant [r] or non-significant [s] relation), including the syn-

chronous (�l ¼ 0) case.

This does not imply that the reference lag is arbitrary, however. In general, there are two factors

to consider: The amount of non-stationarity permitted (loosely related to the type I error in statistical

terms) vs. the true structure potentially removed by the choice of reference lag (related to the test’s

sensitivity or ‘type II error’). For instance, while choosing a directly neighboring bin as reference,

l� ¼ �l� 1, may, at first glance, appear like the ideal choice from the perspective of removing non-sta-

tionarity confounds most efficiently (since in this case we only require p c
D;a
B;t

� �

» p c
D;a
B;tþ1

� �

for Equa-

tion 6 to hold), it may also imply the highest risk of removing true structure from both a

physiological and statistical point of view (the more similar and temporally proximal target and refer-

ence statistics, the more likely they are to be correlated). This is illustrated for the important case of

synchronous activity on simulated data (type I & V assemblies) in Figure 1—figure supplement 1,

where with l� ¼ �l� 1 we find that the test starts to lose part of the structure due to spillover into

neighboring bins, while for too large lags the test’s temporal accuracy goes down, and with that,

more generally, the false discovery rates due to non-stationarity would be expected to rise. Further-

more, given that by far most synaptic connections and physiological responses are unidirectional or

at least asymmetrical (Markram et al., 1997), the scenario that a neuron A is correlated with a neu-

ron B at a couple of different forward lags (e.g., due to bursting) appears more likely than a pair of

asynchronous neurons strictly switching order multiple times. Finally, the strict symmetry implied by

l� ¼ ��l makes the joint count statistics for target vs. reference lag strictly comparable (unspoiled, e.

g., by possibly differing auto-correlations across the target vs. reference lag), and permits to inter-

pret Equation 11 effectively as a two-sided test (with directionality indicated by the sign of #ABBA;�l).

While the ideal choice of reference lag may be an issue of further theoretical and empirical inves-

tigation, we emphasize that a), in practice, the precise choice of reference lag should not be overly

crucial (as supported by the analyses reported above and in Figure 1—figure supplement 1), and

b) analyses may always be repeated for a few different reference lags if in doubt about structure

possibly missed by the initial choice of reference.
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Recursive assembly agglomeration algorithm
Our assembly agglomeration scheme starts from all significant pair-wise interactions, and then adds

new elements only on the basis of the structures already formed, similar in spirit to the apriori-algo-

rithm in machine learning (Hastie et al., 2009; Sastry and Unnikrishnan, 2010). This heuristic proce-

dure drastically reduces the number of configurations to be tested, but may lose significant unit

configurations with non-significant subgroups (Picado-Muiño et al., 2013). For each pair of units A

and B, the spike count #AB;l is obtained for each triplet AB; lð Þ, with l 2 �lmax . . . lmaxf g, and the maxi-

mum count is tested for significance (Figure 6—figure supplement 1, step 2). Since the marginal

elementary processes #a
A and #a

B do not change for different lags l (except for the small influence

from the l bins cut off), this selection procedure is formally equivalent to performing an explicit sig-

nificance test for each lag l and retaining the one associated with the lowest p value. In the next

step, all significant configurations ðAB;�lÞ are treated like single units, with the joint ‘spike (activation)

times’ defined (arbitrarily) as those of unit A whenever it matches up with a spike in unit B separated

by �l time steps (bins). Each significant pair ABð Þ is then paired in turn with all single units C which

had entertained a significant relationship with either A or B in the previous step (Figure 6—figure

supplement 1, step 3). Proceeding with composite pairs ðAB;�lABÞC;�lðABÞC
� �

exactly as described

above, higher-order structures are thus recursively built up. Note that this procedure effectively tests

for higher order structure, rather than just aggregating pairwise information: After screening for

pairwise relations in the first step, for instance, in the second iteration the algorithm tests for the fac-

torization P A;B;Cð Þ ¼ P A;Bð ÞP Cð Þ whenever a unit C is considered for inclusion into the already

formed set ðAB;�lÞ, rather than, e.g., P A;B;Cð Þ ¼ P Að ÞP Bð ÞP Cð Þ, or

“P A;Bð Þ ¼ P Að ÞP Bð Þ _ P A;Cð Þ ¼ P Að ÞP Cð Þ _ P B;Cð Þ ¼ P Bð ÞP Cð Þ”. Likewise, higher order joint distri-

butions are considered in all subsequent iterations.

Significance levels a at each step of the agglomeration scheme are strictly Bonferroni-corrected

as �ai ¼ a=Ri (using a ¼ 0:05 here), with Ri the total number of tests performed. Specifically, for the

first step, R1 ¼ N N � 1ð Þ 2lmax þ 1ð Þ=2, where N is the total number of single units (correcting for the

total number of different pairs). For each subsequent step i, Ri;a ¼ Na;iNu;a 2lmax þ 1ð Þ, where Na;i is the

number of assemblies tested in iteration i, and Nu;a the number of units tested in combination with

that assembly a (hence allowing an higher a-level for assemblies tested in conjunction with less dif-

ferent units). At any step, unit-sets with the same elementary units but different lag distributions

may result. From all these, we select only the one associated with the lowest p-value, and discard all

others. This whole procedure will stop when no units engage in significant relationships anymore

with the already agglomerated sets (Figure 6—figure supplement 1, step 4). All true subsets of

larger sets are finally discarded (but may be retained if hierarchical nesting is of interest, see below).

A pseudo-code for the agglomeration scheme is included below. To test for structure at different

temporal resolutions (scales), the whole scheme is re-run for a range of user-provided bin widths

D ¼ Dmin . . .Dmaxf g. For each assembly pattern the width D

� associated with the lowest p-value is

defined as the characteristic time scale (or temporal precision) for that assembly.

As a final note, for very large D, the binned spike counts may potentially fluctuate around a high

mean level and never fall below some minimum count cfloor considerably larger than zero for the

whole time series. In our count statistics, also spikes up to that baseline rate cfloor would contribute

to the coincidence counts #AB;�l, although they are completely non-informative with respect to the

coupled dynamics among units, thus potentially biasing the results for large D. In this case, since we

are only interested in actual firing rate covariations, we suggest to subtract off the minima

min cDA
� 	

t

� �

and min cDB
� 	

t

� �

from the two considered series A and B, respectively, thus removing the

non-informative floor count before statistical testing. This procedure would not affect the evaluation

of spike coincidences at reasonably small Ds for which min cD
� 	

t

� �

¼ 0, obviously.

Further assembly pruning
Further pruning may be applied to the set of assemblies returned by the algorithm if desired. This

may sometimes help interpretability and visualization, but of course depends on the exact analysis

goals. If, for instance, the interest is in whether the same assemblies are replayed at a different time

scale (e.g. [Diba and Buzsáki, 2007]), then one may want to keep more than just the one assembly

associated with the lowest p-value across time scales D. Here, solely for the purpose of visualization,
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in Figure 3A the full set of assemblies returned by the algorithm was pruned by selecting among all

assemblies (across different D) with cosine distance <0.3 only the one with lowest p-value. In

Figure 1B, again for clarity and visualization, pruning was performed by discarding across scales D

any assembly which is a subset of another, larger assembly (by default this is always done within

each time scale D). No pruning was used for any of the other figures presented in here.

Assembly activation
An instance of assembly activation in the multivariate spike time series was registered whenever

spikes in the elementary assembly units occurred in the order prescribed by the associated pattern

of time lags, with the activation time point defined as that of the assembly unit spiking earliest. The

total assembly activation score (as given in Figure 2B–C) is then defined as the number of such acti-

vation instances within a given time bin of size D. This can lead to activation scores much larger than

one, especially for assemblies defined through rate changes on coarser time scales, since each set of

single assembly unit spikes occurring in the right order is counted. (Alternatively, one may define

assembly activation through the correlation of the average assembly spike count pattern with the

observed spike count patterns along the series of binned spike counts at the respective assembly

resolution D. This would result, however, in a temporally much less well resolved activation score

which otherwise would essentially return the same information.)

A Matlab (MathWorks) implementation of the whole procedure is provided at https://www.zi-

mannheim.de/en/research/departments-research-groups-institutes/theor-neuroscience-e/informa-

tion-computational-neuroscience-e.html. To give an idea of the performance speed, on a 12-core,

2.5 GHz, workstation, for a set of 50 simulated units (see below), a time series of length T=1400 s,

and with D ¼ 0:015; 0:05; 0:1; 0:15; 1f gs and l ¼ �10; . . . ; 10f g, this whole procedure took <50 min

for five embedded assemblies with five units each (scenario from Figure 1). Significant further

improvements in performance speed may be obtained through an implementation in a more basic

language like C++.

Pseudo-code for agglomerative assembly formation

% N: total number of units

% ui, i=1. . .N: single units

% Um: set of units and corresponding lags (assemblies)

% r: set counter

for i = 1:N, Ui {(ui, 0)} % Initialize lists with single units ui

for all i � N, j � N: Zij = FALSE % Initialize all single unit pair comparisons to be

‘false’ (= ‘accept H0’)

r = N, L
old

= 0

REPEAT % agglomeration procedure

L
new

= r

for m = L
old

+ 1:L
new

% move through all lists formed in previous step

for all us =2 Um | m < s � N _ (m > N ^ 9 ul 2 Um:Zsl = TRUE)

% in first step (m � N) probe Um with all other single units not yet tested, or (for

% m>N) probe Um with all other single units that occur in at least one other

% significant pair with a unit from Um

�l � argmaxl(#(um,us),l
) % test for significance at lag �l with maximum pair-wise count:

if Pr(Q�l � F1,(T��l)M�|1[Um, us, �l]|H0) � a / R with R = (L
new � L

old
) � |{us}| � (2lmax + 1):

r r + 1,

Ur {Um, (us, �l)} = {(ur,1, 0), (ur,2, �l2), ... , (ur,|Um|+1
, �l|Um|+1

)}

if |Um| = 1, Zsm = Zms = TRUE

% form new list where each �lj is defined relative to the activationtime point (‘0’) of

the first unit ur,1 in the ordered list; set pair-wise flag to ‘true’ if single-unit
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comparison

L
old  L

new

UNTIL Pr(Q�l � F[Um, us, �l]|H0) > a /R for all m, s

% Pruning steps:

Discard all Um for which 9 n 6¼ m: Um � UnFor all Un, Um for which 8 us 2 Un:us 2 Um :Remove Um if Pr

(Q�l � F[Um]|H0) > Pr(Q�l � F[Un]|H0), and Un otherwise

In the algorithm above |�| denotes the cardinality of a set, and all set-operations (2, �, etc.) are

defined in terms only of the unit-elements composing a set (i.e., ignoring the associated lags with

which their occur).

Alternative procedure
In the REPEAT-loop, instead of probing all pair-wise relations among the current lists (assemblies)

and all single units from significant pairs, one could also check for significant relationships among

pairs of lists Un;Um. As in classical hierarchical, agglomerative cluster-analytic procedures (Gor-

don, 1999), at each step one may only fuse the pair Un;Umð Þ associated with the lowest p-value, add

this to the current set of lists while removing Un;Um, and repeat until Pr Q�l � F Un;Um;�l½ �jH0ð Þ>a=R for

all n, m. This would yield a dendrogram-like representation and thus reveal strictly hierarchical nest-

ing among the assemblies. It comes at the cost, however, that a) many higher-order assemblies may

go undetected, and b) partial overlap among assemblies, which one may expect if the units in

assemblies act like ‘letters in words’, would be prohibited by the definition of the agglomerative pro-

cedure. Also note that hierarchical nesting, to the degree present, could also be revealed with the

definition of the agglomeration scheme in the pseudo-code above if subsets of further agglomer-

ated sets are not pruned away at the end.

Construction of synthetical ‘ground-truth’ data
To test the full assembly detection schemes developed above, artificial spike trains from 50 cells

were created according to inhomogeneous Poisson processes by drawing inter-spike-intervals from

an exponential distribution with rate parameter lit for each unit i. Instantaneous firing rates lit were

governed by an underlying stable first-order autoregressive process

stþ1 ¼Dstþ «t; «t ~N 0;s2

s I
� �

(12)

with coefficient matrix D, and E «t«
T

t
0

h i

¼ 0 for all t 6¼ t
0
(white noise process). (Note that although D is

set such that the autoregressive process itself is stationary, i.e. max jeig Dð Þjð Þ<1, it implies fluctuations

in the firing rate which makes the Poisson spiking processes themselves non-stationary in our defini-

tion above). Since st, in principle, is unbounded (in particular, can assume negative values), it was

pushed through a sigmoid non-linearity

lt ¼ 1þ erf �
st ��s

ss

� �� �

�l; (13)

with erf the error function, and constant mean rate vector �l. Finally, to ensure a refractory period, a

constant delay tref is added to each inter-spike-interval. Where not indicated otherwise, parameters

used for the simulations were �l¼ 5Hz for all units, tref ¼ 15ms, D¼ 0:9 I, where I denotes the identity

matrix, �¼ 0:2, ss ¼ 0:01.

Assemblies of all five types illustrated in Figure 1A were embedded within the same set of 50

spike trains as disjunctive groups of 5 neurons each. Note that since our algorithm is aimed at

detecting significant spike time patterns (rather than, for instance, underlying connectivity), explicit

control of such patterns and spike train statistics with vivo-like characteristics is most important for a

ground truth check, while adding more biophysical realism to the underlying simulation setup would

not help in this case. For assembly type I, each occurrence is marked by five precisely synchronous

spikes across the set of assembly neurons (e.g. [Harris et al., 2003; Miller et al., 2014]). For assem-

bly type II, spikes follow a precise sequential pattern across the set of assembly neurons on each

instance of activation (Lee and Wilson, 2002; Diba and Buzsáki, 2007). Time lags between spikes
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were drawn from a uniform distribution [0 0.1] s, and then fixed for each occurrence. For assembly

type III, spikes across the set of assembly neurons followed a precise temporal pattern, but did not

exhibit a strict temporal order, i.e. each neuron could contribute one to several spikes to the assem-

bly pattern without strictly leading or following others (e.g. [Ikegaya et al., 2004]). For the simula-

tions, these patterns were generated by distributing a few spikes at a Poisson rate of 10 Hz across a

period of 0.2 s for each assembly neuron, but then keeping these patterns fixed on each occasion of

assembly activation.

For the less precise assembly type IV, short windows of extra spikes for each assembly neuron

were organized in a specific temporal pattern, with the exact occurrence of the extra spikes within

the defined time windows determined randomly on each repetition (cf. Figure 1A; e.g.

[Friedrich et al., 2004; Euston et al., 2007; Luczak et al., 2007; Peyrache et al., 2009;

Adler et al., 2012]). Specifically, time windows of 0.3 s with extra spikes at a Poisson rate of 10 Hz

were (without loss of generality) arranged in a sequential order, with the time lag between these

windows drawn from a uniform distribution, [0 0.4] s. While this sequential ordering of time windows

was fixed, within each window spikes were drawn at random on each assembly repetition. Assembly

type V, finally, was simply defined by an increase of the Poisson firing rate from 5 Hz to 10 Hz for

periods of 1 s simultaneously within the set of assembly neurons, as, e.g., during the delay period of

a working memory task (e.g. [Fuster, 1973]).

For all assembly patterns, all spikes from the background process were erased within a �15 ms

window around each assembly spike to preserve the refractory period. Assembly activation times

were distributed (uniformly) randomly across the whole spike time series.

Performance evaluation: Low sample size limit and corrupted spike
trains
To evaluate the performance, statistical power, and potential biases of our assembly detection algo-

rithm more systematically, we focused on two experimentally relevant scenarios: Low assembly

occurrence rates and spike sorting errors. The Rand index (Rand, 1971) was used to quantify the

match between predefined assemblies and those retrieved by the algorithm. The Rand index meas-

ures the agreement between two partitions, in our case of units into assemblies, and is defined as

R r; sð Þ ¼
rþ s

n n� 1ð Þ=2
(14)

where r is the number of unit pairs correctly assigned to the same assembly in both partitions, s the

number of unit pairs correctly assigned to two different assemblies, and n the total number of

detected assembly units. R r; sð Þ varies between 0 and 1, assuming 1 only if the assembly structure

extracted by the algorithm exactly maps onto the one predefined. To obtain a clean picture on the

algorithm’s statistical performance for each assembly type, unconfounded by the presence of other

assembly types, in these analyses each assembly type from Figure 1 was investigated separately (i.

e., unlike the analyses described in the main text where the different assembly types were mixed in

the same simulations).

Figure 2A plots R r; sð Þ for all five assembly types from Figure 1 as a function of total assembly

occurrences (in spike time series of length T=1400 s). Obviously, assembly detection gradually

degrades as these structures start to drown in the noise but, as Figure 2A reveals, this only happens

when the occurrence rates drop below ~0.18 repetitions/sec. Likewise, as shown in Figure 2B, more

than ~30% of all spike times need to be corrupted by spike sorting errors (assignment of assembly

spikes to wrong units) before performance notably decays. In more detail, Figure 2A and B suggest

that sequential assembly patterns (types II and IV) are more vulnerable to lower sample sizes than

those assemblies defined through precisely or broadly, respectively, synchronous firing (types I and

V). The likely reason for this is that the binning procedure itself introduces some noise (as spikes may

fall randomly into one or the other of two neighboring bins), which affects sequential assemblies

more than simultaneous assemblies (for which, in the case of our simulations, it is guaranteed that

aligned groups of spikes end up in the same bin). Considering just assembly types I and V, also note

that assemblies defined by broader simultaneous rate increases are detected much more easily than

those characterized by precise spiking. This is not surprising given that in absolute terms each inci-

dence of an assembly of type V contributes much more spikes to the whole process than an
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assembly of type I, thus in turn causing assemblies of type V being detected across a much larger

range of bin widths than assemblies of type I (cf. Figure 1C). Perhaps most importantly, however, as

studied in Figure 2C–D, our statistical framework is quite conservative and rarely produces false pos-

itives in the simulated scenarios, with a false discovery rate (fraction of units incorrectly assigned to

an assembly) mostly remaining below or around 0.5% across all conditions examined.

Experimental procedures
The in-vivo recordings from the rat (Long-Evans) anterior cingulate cortex (ACC) were taken from

two studies by Hyman et al. (Hyman et al., 2012; Hyman et al., 2013). In both studies, multiple sin-

gle unit recordings were performed with a set of 16 simultaneously implanted tetrodes, with an aver-

age of 35 and 30 isolated (and artifact-free) units per recording session for the environmental

exploration and delayed alternation task, respectively (with n=9 and n=11 sessions in total). In the

environmental exploration task studied in Hyman et al. (Hyman et al., 2012), rats were offloaded in

a novel environment which they were free to explore, with one to several transfers between two dif-

ferent environments. Each environment was analyzed separately by concatenating the spike trains

associated with the repeated exposures to the same environment. The delayed alternation task stud-

ied in Hyman et al. (Hyman et al., 2013), a classical working memory paradigm, took place in a Skin-

ner-box with two levers which the animals had to press in alternating fashion. A delay of 10 s was

introduced between each lever press and a nose poke the animals had to perform on the side oppo-

site to the levers before continuing with the next lever press.

Hippocampal and entorhinal cortex (EC) recordings on the exploration task, performed simulta-

neously within these two areas, were borrowed from (Mizuseki et al., 2013). Recordings were col-

lected from three Long-Evans rats implanted with multi-shank (32 or 64 sites) silicon probes lowered

into the CA1 hippocampal pyramidal layer and into layers 3–5 of entorhinal cortex. In this task

(Mizuseki et al., 2009), rats were free to explore a 180 cm x 180 cm arena with water or Froot Loop

items randomly dispersed throughout. Here we analyzed n=28 sessions (selecting always the longest

session from each day) with on average 22 (CA1) and 19 (EC) artefact-free units per session, respec-

tively. CA1 and EC recordings on the delayed alternation task come from (Pastalkova et al., 2008),

who used the same animals employed on the exploration task (Mizuseki et al., 2009), from which

we took n=23 sessions (again selecting the longest from each day) with on average 28 (CA1) and 22

(EC) isolated and reasonably artefact-free units. Animals had to alternate between the two arms of a

figure-eight shaped maze to obtain reward at water spouts located at the rear of the arms. A delay

of 10 or 20 s, respectively, spent in a running wheel, was inserted between trials for the two animals

tested. For all analyses, all units with average firing rates below 0.2 Hz were excluded. Please see

original publications for further details on electrode placement, unit separation, and experimental

design. CA1 and EC datasets are publicly available at www.crcns.org; ACC datasets will be made

available at https://www.zi-mannheim.de/en/research/departments-research-groups-institutes/theor-

neuroscience-e/information-computational-neuroscience-e.html.
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Appendix

Relation to previous methodological approaches
Numerous other statistical procedures for detecting assemblies or sequential patterns have

been previously proposed (Abeles and Gerstein, 1988; Abeles and Gat, 2001,

2001b; Tetko and Villa, 2001a; Grün et al., 2002a, 2002b; Harris, 2005; Pipa et al., 2008;

Sastry and Unnikrishnan, 2010; Staude et al., 2010a, 2010b; Humphries, 2011; Lopes-

dos-Santos et al., 2011; Gansel and Singer, 2012; Gerstein et al., 2012; Shimazaki et al.,

2012; Picado-Muiño et al., 2013; Torre et al., 2013, 2016a; Lopes-dos-Santos et al.,

2013; Billeh et al., 2014; Logiaco et al., 2016), but most of these adhere to one or the

other theoretical conceptualization of a cell assembly (cf. Figure 1A), or become

(computationally) impractical for larger cell numbers or multiple lags, e.g. because they rely

on time-consuming bootstrap analyses (e.g. [Abeles and Gat, 2001; Pipa et al., 2008;

Fujisawa et al., 2008; Gansel and Singer, 2012; Picado-Muiño et al., 2013; Torre et al.,

2013, 2016a]).

Along similar lines as our procedure, unitary event analysis scans simultaneously recorded

spike trains for precise spike co-occurrences (Figure 1A,I) that exceed the joint spike

probability predicted from independent Poisson processes with the same local rate

(Grün et al., 2002a, 2002b). However, this procedure has not been extended yet to

multiple lags (but see Torre et al. (2016a)) or larger bins (with higher counts), and deals

with non-stationarity through sliding windows or bootstrap analyses. In another approach to

synchronous spike-cluster detection based on the cumulants of the population spike density

of all simultaneously recorded neurons, Staude et al. (Staude et al., 2010a,

2010b) developed a method and stringent statistical test for checking the presence of

higher-order (lag-0) correlations among neurons, without however providing the identity of

the recorded assembly units. A recent ansatz by Shimazaki et al. (Shimazaki et al., 2012)

builds on a state-space model for Poisson point processes developed by Smith and Brown

(Smith and Brown, 2003) to extract higher-order (lag-0) precise correlation patterns from

multiple simultaneously recorded spike trains (see also (Pipa et al., 2008; Gansel and

Singer, 2012; Picado-Muiño et al., 2013; Torre et al., 2013, 2016b; Billeh et al., 2014) for

other recent approaches to the detection of groups of synchronous single spikes).

Smith et al. (Smith and Smith, 2006; Smith et al., 2010) address the problem of testing

significance of recurring spike time sequences or activity chains like those observed in

hippocampal place cells (Figure 1A, II, IV; see also [Abeles and Gerstein, 1988;

Abeles and Gat, 2001; Lee and Wilson, 2004; Fujisawa et al., 2008; Gerstein et al.,

2012]). Their approach makes use only of the order information in the neural activations,

neglecting exact relative timing of spikes or even the number of spikes emitted by each

neuron, in order to allow for derivation of exact probabilities based on the multinomial

distribution and combinatorial considerations. In a similar vein, Sastry & Unnikrishnan

(Sastry and Unnikrishnan, 2010) employ data mining techniques like ’market-basket

analysis’ and the a-priori-algorithm to combat the combinatorial explosion problem in

sequence detection, scanning first for significant sequential pairs, then based on this subset

of pairs for triples, quadruples, and so on, iteratively narrowing down the search space as

potential sequences become longer. Several procedures for revealing common modulations

in firing rate have been proposed as well (Peyrache et al., 2010; Lopes-dos-Santos et al.,

2011; Humphries, 2011; Lopes-dos-Santos et al., 2013).

Although some of these techniques are related in one or the other aspect to our algorithm,

none of them, to our knowledge, combines all of the features presented here. Our

procedure combines fast parametric (bootstrap-free) testing with a fast agglomeration

algorithm. This enables to consider, in a heuristic sense, all potential cell combinations with a

large range of different temporal lags. We furthermore introduce a novel way for dealing

with non-stationarity which is fast and allows to utilize the complete data set for assembly
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estimation, rather than slicing it into sufficiently short windows or using computationally

demanding bootstrapping. Finally, we showed how a parametric statistic for evaluating the

deviation of joint spike distributions from independence can be obtained also for series of

counts larger than one by splitting the process into several binary streams. This enables to

treat processes developing on slower scales (larger bin widths) within the same statistical

framework without loss of information, another novel feature introduced here. The statistical

tools developed here may thus allow to readdress important questions about the nature of

neural coding in different brain areas, without requiring the researcher to sign up for any

particular assembly concept or theoretical framework a priori.

Comparison with linear decomposition and correlation-
based methods
The most popular choices for studying pairwise interactions and (synchronous) multiple-unit

structures are, respectively, (Pearson-type) cross-correlations (e.g. [Shadlen and Newsome,

1998; Brody, 1999]) and principal component analysis (PCA; e.g. [Peyrache et al., 2010;

Lopes-dos-Santos et al., 2011]), owing to their methodological simplicity. In comparison to

the methods developed here, there are a number of important issues to note:

First, both standard cross-correlation and PCA are purely linear techniques. For strictly

binary series, the Pearson cross-correlation is equivalent to computing the deviation of the

joint spiking probability from the product of its marginals in the numerator, p(A,B)-p(A)p(B)

(e.g., [Quiroga-Lombard et al., 2013]). For larger counts or more than two units, however,

cross-correlations and PCA, unlike our method, do not capture nonlinear interactions or

higher-order joint probabilities. Indeed, PCA, strictly, does not even extract correlations

among units but rather variance-maximizing directions from the multiple single-unit activity

space (e.g. [Krzanowski, 2000; Durstewitz, In press]), which is a different objective and

may lead to results different from methods aimed directly at correlations (e.g., [Yu et al.,

2009]).

Second, importantly, for either cross-correlation or PCA based methods, statistical

significance of the unraveled relationships or structures needs to be properly assessed. In

particular, false positives should be avoided. This is in itself a nontrivial topic: Several authors

have pointed out in the past that interpretation of cross-correlations may be severely

plagued by the presence of (inevitable) non-stationarity (like slow rate covariations or

stimulus responses) which may compromise ‘traditional’ testing by means of, e.g., mere bin

or inter-spike-interval shuffling (Brody, 1999; Grün, 2009; Quiroga-Lombard et al., 2013).

Indeed, as illustrated in Appendix 1—figure 1, superfluous peaks in the cross-correlation

may occur, and even flagged up as significant by conventional bootstrapping, although in

reality spike times for the two units were drawn independently. Hence, more sophisticated

bootstrapping and sliding window analyses have to be afforded that take into account auto-

correlations in the time series and non-stationarity (Davison and Hinkley, 1997). But these

imply that statistical quantities need to be recalculated hundreds to thousands of times, a

heavy computational burden that may severely restrict assembly assessment to a limited

number of units or few possible lag constellations and temporal scales only (given that this is

an NP-hard combinatorial optimization problem [Nakahara and Amari, 2002; Staude et al.,

2010]). In fact, the majority of assembly detection methods focus mostly on synchronous

activity (Wilson and McNaughton, 1994; Grün et al., 2003; Peyrache et al., 2010; Lopes-

dos-Santos et al., 2011). Moreover, these methods usually come with some ad-hoc choices,

e.g., the to be used window or block length (in case of block permutations; e.g. [Efron and

Tibshirani, 1993]), for which there is likely no globally optimal choice across the whole time

series. For PCA based methods, sometimes the theoretical Marčenko-Pastur distribution has

been used for assessing significance of eigenvalues (Peyrache et al., 2010; Lopes-dos-

Santos et al., 2011), but as illustrated in Appendix 1—figure 2, this may be quite

misleading especially in the case of non-stationary data.
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Appendix 1—figure 1. Spurious peaks in the cross-correlation function due to non-stationarity.

Two units with Poisson spike trains (T=1900 s) and step-like rate variations of length L=0.5 s

(as, e.g., induced by a stimulus) were simulated. The onsets of the rate steps were drawn

independently for the two units from normal distributions N ti;s
2ð Þ centered at randomly

selected time points ti (with s ¼ 2 s). The Pearson cross-correlation was computed (binning

D = 0.15 s) and tested for significance using inter-spike-interval shuffling (3000 repetitions).

Dashed line indicates 2 standard deviations from mean. For this same simulation setup, our

method correctly indicated the absence of true spike time dependencies when applied with

the same bin width as used for the cross-correlogram.

DOI: 10.7554/eLife.19428.017
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Appendix 1—figure 2. Assembly detection with PCA under non-stationarity. For comparison

with PCA-based assembly detection methods, simulations were performed with 50 non-

stationary Poisson spike trains with four embedded, disjoint assemblies. Assemblies were

defined as synchronous spike events (i.e., ’type I’, cf. Figure 1A; 250 activations in total)

occurring at random times within a set of five units. Non-stationary events were

implemented as step-like changes shared among 4 groups of 5 units each, randomly chosen

from the 50 units simulated, at random timings as described in sect. “Limitations of

parametric testing under non-stationarity” (parameters used here were D=0.02 s, m=250,

L=1 s, T=1950 s, baseline rate=5 Hz, up-state rate=10 Hz). For assembly detection by PCA,

based on the cross-correlation matrix indicated in C, we followed the procedure described

in Lopes-dos-Santos et al. (Lopes-dos-Santos et al., 2011) using code made publically
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available by the authors. (A) Examples of spike trains with assembly occurrences marked in

red. (B) True unit-assembly assignment matrix. (C) Cross-correlation matrix with diagonal set

to zero for better visualization. (D) Eigenvalue spectrum. Red line marks the upper limit of

the Marčenko-Pastur distribution. (E) ‘Loadings’ of units on the two only significant principal

components, indicating the assignment of units to the two assemblies detected this way. (F)

Fraction of correctly detected assembly units (left), fraction of units falsely assigned to an

assembly (center), and fraction of correctly detected assemblies (right) for PCA (yellow bars)

and our method (blue bars). Error bars = SEM, based on 50 independent simulation runs.

DOI: 10.7554/eLife.19428.018

Third, cross-correlation analysis still needs to be augmented with some agglomeration

scheme that builds up higher-order structures from the pairwise interactions, again a non-

trivial endeavor in its own right, especially if various time lag constellations are to be

evaluated. PCA, on the other hand, in its basic and most applied formulation only recovers

strictly synchronous activity. PCA also comes with a number of other inherent short-comings,

(a) because it is not geared toward identifying correlations but, as noted above, variance-

maximizing directions (Krzanowski, 2000; Yu et al., 2009; Durstewitz, In press), (b)

because it may produce assemblies of very unequal size since it places most variation on the

first factor, after which variance contributions often fall off exponentially, and (c) because of

quite high susceptibility to noise if assembly structures are not very clear-cut (Appendix 1—

figure 3).

U
n

it
 d

e
te

c
ti
o

n
 r

a
te

0

0.5

1

0

5

Fraction of incorrectly assigned spikes

0

0.5

1

PCA

our method

A

B

C

F
a

ls
e

 d
is

c
o

v
e

ry

 r
a

te
 (

%
)

A
s
s
e

m
b

ly
 

d
e

te
c
ti
o

n
 r

a
te

0 0.1 0.2 0.3

0 0.1 0.2 0.3

0 0.1 0.2 0.3

Appendix 1—figure 3. Stability of PCA solutions to degradation in assembly patterns. Even

under fully stationary conditions, PCA may completely fail to detect assembly patterns if

degraded by spike assignment noise. Simulation setup was as in Appendix 1—figure 2, with
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the exception that no non-stationary step changes were included, i.e. spike trains were

completely stationary. PCA methods were implemented as in Appendix 1—figure 2 (see

ref. [Euston et al., 2007]). Noise in the form of spike misattributions or spike failures was

introduced by randomly removing a fraction of assembly spikes from each spike train. (A)

Fraction of correctly detected assembly units as a function of the proportion of spike

assignment errors, (B) fraction of units incorrectly assigned to an assembly (false discovery

rate), and (C) fraction of correctly detected assemblies (out of the total number of

embedded assemblies), for PCA (yellow curves) and our method (blue curves). Error bars =

SEM, based on 50 independent simulation runs.

DOI: 10.7554/eLife.19428.019

Our algorithm aims to address all these statistical and computational issues in one go,

provides proper and fast statistical assessment of unit interactions, unconfounded by non-

stationarity within the limits shown (Figure 7, Figure 7—figure supplements 1,2), does this

for all possible lag constellations (not just synchrony), and comes with an efficient,

statistically anchored algorithm for detecting higher-order structures.
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